Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of purkinje cell output.
نویسندگان
چکیده
The contribution of Purkinje cells to cerebellar motor coordination and learning is determined in part by the chronic and acute effects of climbing fiber (CF) afferents. Whereas the chronic effects of CF discharge, such as the depression of conjunctive parallel fiber (PF) inputs, are well established, the acute cellular functions of CF discharge remain incompletely understood. In rat cerebellar slices, we show that CF discharge presented at physiological frequencies substantially modifies the frequency and pattern of Purkinje cell spike output in vitro. Repetitive CF discharge converts a spontaneous trimodal pattern of output characteristic of Purkinje cells in vitro to a more naturalistic nonbursting pattern consisting of spike trains interrupted by short CF-evoked pauses or longer pauses associated with state transitions. All effects of CF discharge could be reproduced in the presence of synaptic blockers by using current injections to simulate complex spike depolarizations, revealing that CF-evoked changes in Purkinje cell output can occur independently of network activation. Rather postsynaptic changes are sufficient to account for the CF-evoked block of trimodal activity and include at least the activation of Ca(2+)-dependent K(+) channels. Furthermore by controlling the frequency of Purkinje cell spike output over three discrete firing levels, CF discharge modulates the gain of Purkinje cell responsiveness to PF inputs in vitro through postsynaptic mechanisms triggered by the complex spike depolarization. The ability for CF discharge to acutely modulate diverse aspects of Purkinje cell output provides important insights into the probable cellular factors contributing to motor disturbances following CF denervation.
منابع مشابه
Functions of interneurons in mouse cerebellum.
The output signal of Purkinje cells is conveyed by the modulated discharge of simple spikes (SSs) often ascribed to mossy fiber-granule cell-parallel fiber inputs to Purkinje cell dendrites. Although generally accepted, this view lacks experimental support. We can address this view by controlling afferent signals that reach the cerebellum over climbing and mossy fiber pathways. Vestibular prima...
متن کاملMechanisms of Spontaneous Climbing Fiber Discharge-Evoked Pauses and Output Modulation of Cerebellar Purkinje Cell in Mice
Climbing fiber (CF) afferents modulate the frequency and patterns of cerebellar Purkinje cell (PC) simple spike (SS) activity, but its mechanism is unclear. In the present study, we investigated the mechanisms of spontaneous CF discharge-evoked pauses and the output modulation of cerebellar PCs in urethane-anesthetized mice using in vivo whole-cell recording techniques and pharmacological metho...
متن کاملInput minimization: a model of cerebellar learning without climbing fiber error signals.
The cerebellum is critical for motor learning. Current cerebellar learning models follow the Marr/Albus paradigm, in which climbing fibers provide error signals that shape plastic synapses between parallel fibers and Purkinje cells. However, climbing fibers have slow and largely random discharge, and seem unlikely to provide error signals with resolution sufficient to guide cerebellar learning....
متن کاملEvidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells.
It is well established that the climbing fiber (CF) input to a cerebellar Purkinje cell (PC) can exert a controlling influence on the background simple spike (SS) activity of the cell, in that repetitive stimulation of CFs causes a decrease in SS activity, and removal or inactivation of CFs is followed by a rise in activity. In the present study, the effects of inactivation of CFs in the short ...
متن کاملMicrolesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum.
Cerebellar Purkinje cells have two distinct action potentials: complex spikes (CSs) are evoked by single climbing fibers that originate from the contralateral inferior olive. Simple spikes (SSs) are often ascribed to mossy fiber-granule cell-parallel fiber inputs to Purkinje cells. Although generally accepted, this view lacks experimental support. Vestibular stimulation independently activates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 97 4 شماره
صفحات -
تاریخ انتشار 2007